Assumptions:
Alternative assumptions:
TeX:
J^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {\left(-1\right)}^{k} {r \choose k} J_{\nu + 2 k - r}\!\left(z\right) \nu \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pow | Power | |
Sum | Sum | |
Binomial | Binomial coefficient | |
ZZ | Integers | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2488bb"), Formula(Equal(BesselJ(nu, z, r), Mul(Div(1, Pow(2, r)), Sum(Mul(Mul(Pow(-1, k), Binomial(r, k)), BesselJ(Sub(Add(nu, Mul(2, k)), r), z)), For(k, 0, r))))), Variables(nu, z, r), Assumptions(And(Element(nu, ZZ), Element(z, CC), Element(r, ZZGreaterEqual(0))), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0)))))