Assumptions:
TeX:
\int_{M / 2}^{N / 2} \theta_{3}\!\left(x , \tau\right) \, dx = \frac{N - M}{2}
\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("2429b2"),
Formula(Equal(Integral(JacobiTheta(3, x, tau), For(x, Div(M, 2), Div(N, 2))), Div(Sub(N, M), 2))),
Variables(tau, M, N),
Assumptions(And(Element(tau, HH), Element(M, ZZ), Element(N, ZZ))))