Assumptions:
References:
- H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66(217), pp. 373-389. Theorem 8.
TeX:
\log \Gamma(x) > \left(x - \frac{1}{2}\right) \log(x) - x + \frac{\log\!\left(2 \pi\right)}{2} + \sum_{k=1}^{2 n} \frac{B_{2 k}}{2 k \left(2 k - 1\right) {x}^{2 k - 1}} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogGamma | Logarithmic gamma function | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
Sum | Sum | |
BernoulliB | Bernoulli number | |
Pow | Power | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2398a1"), Formula(Greater(LogGamma(x), Add(Add(Sub(Mul(Sub(x, Div(1, 2)), Log(x)), x), Div(Log(Mul(2, Pi)), 2)), Sum(Div(BernoulliB(Mul(2, k)), Mul(Mul(Mul(2, k), Sub(Mul(2, k), 1)), Pow(x, Sub(Mul(2, k), 1)))), For(k, 1, Mul(2, n)))))), Variables(x, n), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(n, ZZGreaterEqual(0)))), References("H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66(217), pp. 373-389. Theorem 8."))