References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
TeX:
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}} = \frac{5}{24} \left(\theta_{2}^{4}\!\left(0, \tau\right) - \theta_{4}^{4}\!\left(0, \tau\right) + 1\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
Fibonacci | Fibonacci number | |
Infinity | Positive infinity | |
JacobiTheta | Jacobi theta function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Log | Natural logarithm | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("22b67a"), Formula(Equal(Sum(Div(1, Pow(Fibonacci(n), 2)), For(n, 1, Infinity)), Where(Mul(Div(5, 24), Add(Sub(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4)), 1)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))