Assumptions:
TeX:
G_{2 k}\!\left(\tau\right) = \sum_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}
k \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EisensteinG | Eisenstein series | |
| Sum | Sum | |
| Pow | Power | |
| ZZ | Integers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("2246a7"),
Formula(Equal(EisensteinG(Mul(2, k), tau), Sum(Div(1, Pow(Add(Mul(m, tau), n), Mul(2, k))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0))))))),
Variables(k, tau),
Assumptions(And(Element(k, ZZGreaterEqual(2)), Element(tau, HH))))