Assumptions:
TeX:
\frac{d^{n}}{{d z}^{n}} \left[\psi^{(m)}\!\left(z\right)\right] = \psi^{(m + n)}\!\left(z\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
DigammaFunction | Digamma function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("21f4f9"), Formula(Equal(ComplexDerivative(Brackets(DigammaFunction(z, m)), For(z, z, n)), DigammaFunction(z, Add(m, n)))), Variables(n, m, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))