The principal square root
is a function of one complex variable .
It has a branch point singularity at
and a branch cut on
where the value on
is taken to be continuous with the upper half plane.
The following table lists all conditions such that Sqrt(z) is defined in Fungrim.
|
Table data:
such that
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
OpenInterval | Open interval | |
ClosedOpenInterval | Closed-open interval | |
CC | Complex numbers | |
UnsignedInfinity | Unsigned infinity | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
Pi | The constant pi (3.14...) | |
PowerSeries | Formal power series | |
RR | Real numbers |
Source code for this entry:
Entry(ID("21d9b8"), SymbolDefinition(Sqrt, Sqrt(z), "Principal square root"), Description("The principal square root", Sqrt(z), "is a function of one complex variable", z, "."), Description("It has a branch point singularity at", Equal(z, 0), "and a branch cut on", OpenClosedInterval(Neg(Infinity), 0), "where the value on", OpenInterval(Neg(Infinity), 0), "is taken to be continuous with the upper half plane."), Description("The following table lists all conditions such that", SourceForm(Sqrt(z)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(Element(z, ClosedOpenInterval(0, Infinity)), Element(Sqrt(z), ClosedOpenInterval(0, Infinity))), Tuple(Element(z, CC), Element(Sqrt(z), CC)), TableSection("Infinities"), Tuple(Element(z, Set(UnsignedInfinity)), Element(Sqrt(z), Set(UnsignedInfinity))), Tuple(Element(z, Set(Mul(Exp(Mul(ConstI, theta)), Infinity), ForElement(theta, OpenClosedInterval(Neg(Pi), Pi)))), Element(Sqrt(z), Set(Mul(Exp(Mul(ConstI, theta)), Infinity), ForElement(theta, OpenClosedInterval(Div(Neg(Pi), 2), Div(Pi, 2)))))), TableSection("Formal power series"), Tuple(And(Element(z, PowerSeries(RR, x)), Element(SeriesCoefficient(z, x, 0), OpenInterval(0, Infinity))), And(Element(Sqrt(z), PowerSeries(RR, x)))), Tuple(And(Element(z, PowerSeries(CC, x)), NotEqual(SeriesCoefficient(z, x, 0), 0)), And(Element(Sqrt(z), PowerSeries(CC, x)))))))