Assumptions:
TeX:
2 \theta_{2}^{2}\!\left(0, 2 \tau\right) = \theta_{3}^{2}\!\left(0, \tau\right) - \theta_{4}^{2}\!\left(0, \tau\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("21c2f7"), Formula(Equal(Mul(2, Pow(JacobiTheta(2, 0, Mul(2, tau)), 2)), Sub(Pow(JacobiTheta(3, 0, tau), 2), Pow(JacobiTheta(4, 0, tau), 2)))), Variables(tau), Assumptions(Element(tau, HH)))