Assumptions:
TeX:
2 \theta_{2}^{2}\!\left(0, 2 \tau\right) = \theta_{3}^{2}\!\left(0, \tau\right) - \theta_{4}^{2}\!\left(0, \tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane | 
Source code for this entry:
Entry(ID("21c2f7"),
    Formula(Equal(Mul(2, Pow(JacobiTheta(2, 0, Mul(2, tau)), 2)), Sub(Pow(JacobiTheta(3, 0, tau), 2), Pow(JacobiTheta(4, 0, tau), 2)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))