Fungrim home page

Fungrim entry: 21839d

λ ⁣(aτ+bcτ+d)=λ(τ)\lambda\!\left(\frac{a \tau + b}{c \tau + d}\right) = \lambda(\tau)
Assumptions:τH  and  (abcd)SL2(Z)  and  (abcd)(1001)(mod2)\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod {2}
TeX:
\lambda\!\left(\frac{a \tau + b}{c \tau + d}\right) = \lambda(\tau)

\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod {2}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Matrix2x2(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} Two by two matrix
SL2ZSL2(Z)\operatorname{SL}_2(\mathbb{Z}) Modular group
Source code for this entry:
Entry(ID("21839d"),
    Formula(Equal(ModularLambda(Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), ModularLambda(tau))),
    Variables(tau, a, b, c, d),
    Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z), CongruentMod(Matrix2x2(a, b, c, d), Matrix2x2(1, 0, 0, 1), 2))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC