Assumptions:
TeX:
\lambda\!\left(\frac{a \tau + b}{c \tau + d}\right) = \lambda(\tau) \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod {2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularLambda | Modular lambda function | |
HH | Upper complex half-plane | |
Matrix2x2 | Two by two matrix | |
SL2Z | Modular group |
Source code for this entry:
Entry(ID("21839d"), Formula(Equal(ModularLambda(Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), ModularLambda(tau))), Variables(tau, a, b, c, d), Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z), CongruentMod(Matrix2x2(a, b, c, d), Matrix2x2(1, 0, 0, 1), 2))))