Assumptions:
TeX:
\left|W'_{k}\!\left(z\right)\right| \le \left|\frac{1}{\left|z\right|} \left(1 + \frac{1}{4 + {\left|z\right|}^{2}}\right)\right|
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left(k \in \left\{1, -1\right\} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(z\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(k = -1 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \lt 0\right) \,\mathbin{\operatorname{or}}\, \left(k = 1 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \ge 0\right)\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| LambertW | Lambert W-function | |
| Pow | Power | |
| CC | Complex numbers | |
| Re | Real part | |
| Im | Imaginary part |
Source code for this entry:
Entry(ID("214b1c"),
Formula(LessEqual(Abs(LambertW(k, z, 1)), Abs(Mul(Div(1, Abs(z)), Add(1, Div(1, Add(4, Pow(Abs(z), 2)))))))),
Variables(k, z),
Assumptions(And(Element(z, CC), Or(And(Element(k, Set(1, -1)), GreaterEqual(Re(z), 0)), And(Equal(k, -1), Less(Im(z), 0)), And(Equal(k, 1), GreaterEqual(Im(z), 0))))))