Assumptions:
References:
- D. J. Platt (2013), Numerical computations concerning the GRH. https://arxiv.org/pdf/1305.3087.pdf
TeX:
\operatorname{Re}\!\left(\rho_{n,\chi}\right) = \frac{1}{2} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \ne 0 \;\mathbin{\operatorname{and}}\; \left(\left(q < 400000 \;\mathbin{\operatorname{and}}\; \left|\operatorname{Im}\!\left(\rho_{n,\chi}\right)\right| < \frac{{10}^{8}}{q}\right) \;\mathbin{\operatorname{or}}\; \operatorname{GRH}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Real part | |
DirichletLZero | Nontrivial zero of Dirichlet L-function | |
ZZGreaterEqual | Integers greater than or equal to n | |
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
ZZ | Integers | |
Abs | Absolute value | |
Im | Imaginary part | |
Pow | Power | |
GeneralizedRiemannHypothesis | Generalized Riemann hypothesis |
Source code for this entry:
Entry(ID("214a91"), Formula(Equal(Re(DirichletLZero(n, chi)), Div(1, 2))), Variables(q, n, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(n, ZZ), NotEqual(n, 0), Or(And(Less(q, 400000), Less(Abs(Im(DirichletLZero(n, chi))), Div(Pow(10, 8), q))), GeneralizedRiemannHypothesis))), References("D. J. Platt (2013), Numerical computations concerning the GRH. https://arxiv.org/pdf/1305.3087.pdf"))