Assumptions:
TeX:
\left(x\right)_{n} = \sum_{k=0}^{n} \left[{n \atop k}\right] {x}^{k} n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RisingFactorial | Rising factorial | |
StirlingCycle | Unsigned Stirling number of the first kind | |
Pow | Power | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("21241f"), Formula(Equal(RisingFactorial(x, n), Sum(Mul(StirlingCycle(n, k), Pow(x, k)), Tuple(k, 0, n)))), Variables(x, n), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))