Assumptions:
TeX:
{\left(x y\right)}^{a} = {x}^{a} {y}^{a} \exp\!\left(2 \pi i a \left\lfloor \frac{\pi - \arg\!\left(x\right) - \arg\!\left(y\right)}{2 \pi} \right\rfloor\right) x \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, y \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, a \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Exp | Exponential function | |
ConstPi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Arg | Complex argument | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("2090c3"), Formula(Equal(Pow(Mul(x, y), a), Mul(Mul(Pow(x, a), Pow(y, a)), Exp(Mul(Mul(Mul(Mul(2, ConstPi), ConstI), a), Floor(Div(Sub(Sub(ConstPi, Arg(x)), Arg(y)), Mul(2, ConstPi)))))))), Variables(x, y, a), Assumptions(And(Element(x, SetMinus(CC, Set(0))), Element(y, SetMinus(CC, Set(0))), Element(a, CC))))