Assumptions:
TeX:
\theta_{3}^{4}\!\left(0, \tau\right) = \theta_{2}^{4}\!\left(0, \tau\right) + \theta_{4}^{4}\!\left(0, \tau\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("1fbc09"), Formula(Equal(Pow(JacobiTheta(3, 0, tau), 4), Add(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4)))), Variables(tau), Assumptions(And(Element(tau, HH))))