Assumptions:
TeX:
\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left[C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right] = \left\{\right\} C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(C = 0 \;\mathbin{\operatorname{and}}\; D = 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
AiryAi | Airy function of the first kind | |
AiryBi | Airy function of the second kind | |
CC | Complex numbers | |
UnsignedInfinity | Unsigned infinity |
Source code for this entry:
Entry(ID("1f0577"), Formula(Equal(Poles(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), ForElement(z, Union(CC, Set(UnsignedInfinity)))), Set())), Variables(C, D), Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))