Assumptions:
TeX:
\operatorname{atan}\!\left(x\right) \ge \sum_{k=0}^{2 N + 1} \frac{{\left(-1\right)}^{k} {x}^{2 k + 1}}{2 k + 1}
x \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Atan | Inverse tangent | |
| Pow | Power | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("1eeccf"),
Formula(GreaterEqual(Atan(x), Sum(Div(Mul(Pow(-1, k), Pow(x, Add(Mul(2, k), 1))), Add(Mul(2, k), 1)), Tuple(k, 0, Add(Mul(2, N), 1))))),
Variables(x, N),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(N, ZZGreaterEqual(0)))))