Assumptions:
References:
- https://doi.org/10.1016/0022-0728(88)87001-3
TeX:
\int_{0}^{\infty} {e}^{-a t} \theta_{3}\!\left(0 , i t\right) \, dt = \sqrt{\frac{\pi}{a}} \coth\!\left(\sqrt{\pi a}\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Exp | Exponential function | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("1ee920"),
Formula(Equal(Integral(Mul(Exp(Mul(Neg(a), t)), JacobiTheta(3, 0, Mul(ConstI, t))), For(t, 0, Infinity)), Mul(Sqrt(Div(Pi, a)), Coth(Sqrt(Mul(Pi, a)))))),
Variables(a),
Assumptions(And(Element(a, CC), Greater(Re(a), 0))),
References("https://doi.org/10.1016/0022-0728(88)87001-3"))