Fungrim home page

Fungrim entry: 1e00d2

Bn2Bn1Bn+1(1+1n)Bn2B_{n}^{2} \le B_{n - 1} B_{n + 1} \le \left(1 + \frac{1}{n}\right) B_{n}^{2}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
References:
  • https://arxiv.org/abs/math/0104137
TeX:
B_{n}^{2} \le B_{n - 1} B_{n + 1} \le \left(1 + \frac{1}{n}\right) B_{n}^{2}

n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
BellNumberBnB_{n} Bell number
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("1e00d2"),
    Formula(LessEqual(Pow(BellNumber(n), 2), Mul(BellNumber(Sub(n, 1)), BellNumber(Add(n, 1))), Mul(Add(1, Div(1, n)), Pow(BellNumber(n), 2)))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(1))),
    References("https://arxiv.org/abs/math/0104137"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC