Assumptions:
TeX:
\eta(\tau) = {e}^{\pi i \tau / 12} \prod_{k=1}^{\infty} \left(1 - {e}^{2 \pi i k \tau}\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DedekindEta | Dedekind eta function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Product | Product | |
| Infinity | Positive infinity | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("1dc520"),
Formula(Equal(DedekindEta(tau), Mul(Exp(Div(Mul(Mul(Pi, ConstI), tau), 12)), Product(Parentheses(Sub(1, Exp(Mul(Mul(Mul(Mul(2, Pi), ConstI), k), tau)))), For(k, 1, Infinity))))),
Variables(tau),
Assumptions(Element(tau, HH)))