Fungrim home page

Fungrim entry: 1da705

zeroszCσ ⁣(z,τ)=Λ(1,τ)\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \sigma\!\left(z, \tau\right) = \Lambda_{(1, \tau)}
Assumptions:τH\tau \in \mathbb{H}
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \sigma\!\left(z, \tau\right) = \Lambda_{(1, \tau)}

\tau \in \mathbb{H}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
WeierstrassSigmaσ ⁣(z,τ)\sigma\!\left(z, \tau\right) Weierstrass sigma function
CCC\mathbb{C} Complex numbers
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(Zeros(WeierstrassSigma(z, tau), ForElement(z, CC)), Lattice(1, tau))),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC