Assumptions:
TeX:
\frac{1}{\zeta\!\left(s\right)} = \sum_{k=1}^{\infty} \frac{\mu(k)}{{k}^{s}}
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Sum | Sum | |
| MoebiusMu | Möbius function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("1d46d4"),
Formula(Equal(Div(1, RiemannZeta(s)), Sum(Div(MoebiusMu(k), Pow(k, s)), For(k, 1, Infinity)))),
Variables(s),
Assumptions(And(Element(s, CC), Greater(Re(s), 1))))