Assumptions:
TeX:
\frac{1}{\zeta\!\left(s\right)} = \sum_{k=1}^{\infty} \frac{\mu(k)}{{k}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
MoebiusMu | Möbius function | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("1d46d4"), Formula(Equal(Div(1, RiemannZeta(s)), Sum(Div(MoebiusMu(k), Pow(k, s)), For(k, 1, Infinity)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 1))))