Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
\left|R_{N}\!\left(z\right)\right| \le \frac{\left|B_{2 N + 2}\right|}{2 N \left(2 N + 1\right) \left(2 N + 2\right) {\left|z\right|}^{2 N}} \begin{cases} 1, & \left|\arg(z)\right| \le \frac{\pi}{4}\\\sec^{2 N + 1}\!\left(\frac{1}{2} \arg(z)\right), & \left|\arg(z)\right| < \pi\\ \end{cases} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
LogBarnesGRemainder | Remainder term in asymptotic expansion of logarithmic Barnes G-function | |
BernoulliB | Bernoulli number | |
Pow | Power | |
Arg | Complex argument | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("1d4638"), Formula(LessEqual(Abs(LogBarnesGRemainder(N, z)), Mul(Div(Abs(BernoulliB(Add(Mul(2, N), 2))), Mul(Mul(Mul(Mul(2, N), Add(Mul(2, N), 1)), Add(Mul(2, N), 2)), Pow(Abs(z), Mul(2, N)))), Cases(Tuple(1, LessEqual(Abs(Arg(z)), Div(Pi, 4))), Tuple(Pow(Sec(Mul(Div(1, 2), Arg(z))), Add(Mul(2, N), 1)), Less(Abs(Arg(z)), Pi)))))), Variables(z, N), Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), Element(N, ZZGreaterEqual(1)))), References("https://dx.doi.org/10.1098/rspa.2014.0534"))