Fungrim home page

Fungrim entry: 1cbe83

ψ(m) ⁣()=limxψ ⁣(x)={,m=00,m>0\psi^{(m)}\!\left(\infty\right) = \lim_{x \to \infty} \psi\!\left(x\right) = \begin{cases} \infty, & m = 0\\0, & m > 0\\ \end{cases}
Assumptions:mZ0m \in \mathbb{Z}_{\ge 0}
\psi^{(m)}\!\left(\infty\right) = \lim_{x \to \infty} \psi\!\left(x\right) = \begin{cases} \infty, & m = 0\\0, & m > 0\\ \end{cases}

m \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Infinity\infty Positive infinity
RealLimitlimxaf(x)\lim_{x \to a} f(x) Limiting value, real variable
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(DigammaFunction(Infinity, m), RealLimit(DigammaFunction(x), For(x, Infinity)), Cases(Tuple(Infinity, Equal(m, 0)), Tuple(0, Greater(m, 0))))),
    Assumptions(Element(m, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC