Assumptions:
References:
- http://functions.wolfram.com/IntegerFunctions/Fibonacci/26/01/01/0007/
TeX:
F_{n} = \frac{n}{{2}^{n - 1}} \,{}_2F_1\!\left(\frac{1 - n}{2}, \frac{2 - n}{2}, \frac{3}{2}, 5\right) n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fibonacci number | |
Pow | Power | |
Hypergeometric2F1 | Gauss hypergeometric function | |
ZZ | Integers |
Source code for this entry:
Entry(ID("1c90fb"), Formula(Equal(Fibonacci(n), Mul(Div(n, Pow(2, Sub(n, 1))), Hypergeometric2F1(Div(Sub(1, n), 2), Div(Sub(2, n), 2), Div(3, 2), 5)))), Variables(n), Assumptions(Element(n, ZZ)), References("http://functions.wolfram.com/IntegerFunctions/Fibonacci/26/01/01/0007/"))