Assumptions:
TeX:
\left(x > {x}_{0}\right) \;\implies\; \left({G}^{(n)}(x) > 0\right)\; \text{ where } {x}_{0} = \begin{cases} 0, & n = 0\\2.557664, & n = 1\\1.898850, & n = 2\\0.788740, & n = 3\\ \end{cases} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \left\{0, 1, 2, 3\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RealDerivative | Real derivative | |
BarnesG | Barnes G-function | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("1c770c"), Formula(Where(Implies(Greater(x, Subscript(x, 0)), Greater(RealDerivative(BarnesG(x), For(x, x, n)), 0)), Equal(Subscript(x, 0), Cases(Tuple(0, Equal(n, 0)), Tuple(Decimal("2.557664"), Equal(n, 1)), Tuple(Decimal("1.898850"), Equal(n, 2)), Tuple(Decimal("0.788740"), Equal(n, 3)))))), Variables(x, n), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(n, Set(0, 1, 2, 3)))))