Assumptions:
TeX:
\eta'(\tau) = \frac{i}{2 \pi} \eta(\tau) \zeta\!\left(\frac{1}{2}, \tau\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
DedekindEta | Dedekind eta function | |
ConstI | Imaginary unit | |
Pi | The constant pi (3.14...) | |
WeierstrassZeta | Weierstrass zeta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("1c25d3"), Formula(Equal(ComplexDerivative(DedekindEta(tau), For(tau, tau)), Mul(Mul(Div(ConstI, Mul(2, Pi)), DedekindEta(tau)), WeierstrassZeta(Div(1, 2), tau)))), Variables(tau), Assumptions(Element(tau, HH)))