Assumptions:
This allows an L-function of a non-primitive character to be expressed in terms of an L-function of a primitive character.
TeX:
L\!\left(s, \chi\right) = L\!\left(s, {\chi}_{0}\right) \prod_{p \mid q} \left(1 - \frac{{\chi}_{0}\!\left(p\right)}{{p}^{s}}\right)\; \text{ where } {\chi}_{1} = \chi_{q \, . \, 1},\;\chi = {\chi}_{0} {\chi}_{1} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; d \in \{1, 2, \ldots, q\} \;\mathbin{\operatorname{and}}\; d \mid q \;\mathbin{\operatorname{and}}\; {\chi}_{0} \in G^{\text{Primitive}}_{d} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | Dirichlet L-function | |
PrimeProduct | Product over primes | |
Pow | Power | |
DirichletCharacter | Dirichlet character | |
ZZGreaterEqual | Integers greater than or equal to n | |
Range | Integers between given endpoints | |
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("1bd945"), Formula(Where(Equal(DirichletL(s, chi), Mul(DirichletL(s, Subscript(chi, 0)), PrimeProduct(Parentheses(Sub(1, Div(Call(Subscript(chi, 0), p), Pow(p, s)))), For(p), Divides(p, q)))), Equal(Subscript(chi, 1), DirichletCharacter(q, 1)), Equal(chi, Mul(Subscript(chi, 0), Subscript(chi, 1))))), Variables(q, d, Subscript(chi, 0), s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(d, Range(1, q)), Divides(d, q), Element(Subscript(chi, 0), PrimitiveDirichletCharacters(d)), Element(s, CC))), Description("This allows an L-function of a non-primitive character to be expressed in terms of an L-function of a primitive character."))