Fungrim home page

Fungrim entry: 1b2d8a

zerosτHj ⁣(τ)={γe2πi/3:γPSL2(Z)}\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} j\!\left(\tau\right) = \left\{ \gamma \circ {e}^{2 \pi i / 3} : \gamma \in \operatorname{PSL}_2(\mathbb{Z}) \right\}
TeX:
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} j\!\left(\tau\right) = \left\{ \gamma \circ {e}^{2 \pi i / 3} : \gamma \in \operatorname{PSL}_2(\mathbb{Z}) \right\}
Definitions:
Fungrim symbol Notation Short description
ModularJj ⁣(τ)j\!\left(\tau\right) Modular j-invariant
HHH\mathbb{H} Upper complex half-plane
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
ModularGroupActionγτ\gamma \circ \tau Action of modular group
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
PSL2ZPSL2(Z)\operatorname{PSL}_2(\mathbb{Z}) Modular group (canonical representatives)
Source code for this entry:
Entry(ID("1b2d8a"),
    Formula(Equal(Zeros(ModularJ(tau), tau, Element(tau, HH)), SetBuilder(ModularGroupAction(gamma, Exp(Div(Mul(Mul(2, ConstPi), ConstI), 3))), gamma, Element(gamma, PSL2Z)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC