Assumptions:
TeX:
f\!\left(z + x\right) = \sum_{k=0}^{\infty} \frac{{f}^{(k)}(z)}{k !} {x}^{k}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \operatorname{ClosedDisk}\!\left(z, \left|x\right|\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| ComplexDerivative | Complex derivative | |
| Factorial | Factorial | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| IsHolomorphic | Holomorphic predicate | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("1b1ec5"),
Formula(Equal(f(Add(z, x)), Sum(Mul(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k)), Pow(x, k)), For(k, 0, Infinity)))),
Variables(f, z, x),
Assumptions(And(Element(z, CC), Element(x, CC), IsHolomorphic(f(t), ForElement(t, ClosedDisk(z, Abs(x)))))))