Assumptions:
TeX:
f\!\left(z + x\right) = \sum_{k=0}^{\infty} \frac{{f}^{(k)}(z)}{k !} {x}^{k} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \operatorname{ClosedDisk}\!\left(z, \left|x\right|\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
ComplexDerivative | Complex derivative | |
Factorial | Factorial | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
IsHolomorphic | Holomorphic predicate | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("1b1ec5"), Formula(Equal(f(Add(z, x)), Sum(Mul(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k)), Pow(x, k)), For(k, 0, Infinity)))), Variables(f, z, x), Assumptions(And(Element(z, CC), Element(x, CC), IsHolomorphic(f(t), ForElement(t, ClosedDisk(z, Abs(x)))))))