Assumptions:
TeX:
\sum_{n=1}^{\infty} \frac{\varphi(n)}{{n}^{s}} = \frac{\zeta\!\left(s - 1\right)}{\zeta\!\left(s\right)} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 2
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Totient | Euler totient function | |
Pow | Power | |
Infinity | Positive infinity | |
RiemannZeta | Riemann zeta function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("1a907e"), Formula(Equal(Sum(Div(Totient(n), Pow(n, s)), For(n, 1, Infinity)), Div(RiemannZeta(Sub(s, 1)), RiemannZeta(s)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 2))))