Assumptions:
TeX:
\sum_{n=1}^{\infty} \frac{\varphi(n)}{{n}^{s}} = \frac{\zeta\!\left(s - 1\right)}{\zeta\!\left(s\right)}
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 2Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Totient | Euler totient function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| RiemannZeta | Riemann zeta function | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("1a907e"),
Formula(Equal(Sum(Div(Totient(n), Pow(n, s)), For(n, 1, Infinity)), Div(RiemannZeta(Sub(s, 1)), RiemannZeta(s)))),
Variables(s),
Assumptions(And(Element(s, CC), Greater(Re(s), 2))))