Assumptions:
Alternative assumptions:
TeX:
\zeta\!\left(1 - s\right) = \frac{2 \cos\!\left(\frac{1}{2} \pi s\right)}{{\left(2 \pi\right)}^{s}} \Gamma(s) \zeta\!\left(s\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \notin \{1, 0, \ldots\}
s \in \mathbb{C}[[x]] \;\mathbin{\operatorname{and}}\; s \notin \{1, 0, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| Gamma | Gamma function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n | |
| PowerSeries | Formal power series |
Source code for this entry:
Entry(ID("1a63af"),
Formula(Equal(RiemannZeta(Sub(1, s)), Mul(Mul(Div(Mul(2, Cos(Mul(Mul(Div(1, 2), Pi), s))), Pow(Mul(2, Pi), s)), Gamma(s)), RiemannZeta(s)))),
Variables(s),
Assumptions(And(Element(s, CC), NotElement(s, ZZLessEqual(1))), And(Element(s, PowerSeries(CC, SerX)), NotElement(s, ZZLessEqual(1)))))