Assumptions:
TeX:
\sum_{n=A}^{B} \frac{1}{n + a} = \psi\!\left(a + B + 1\right) - \psi\!\left(a + A\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; A \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; B \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; A \le B \;\mathbin{\operatorname{and}}\; -a \notin \{A, A + 1, \ldots, B\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| DigammaFunction | Digamma function | |
| CC | Complex numbers | |
| ZZ | Integers | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("19e67f"),
Formula(Equal(Sum(Div(1, Add(n, a)), For(n, A, B)), Sub(DigammaFunction(Add(Add(a, B), 1)), DigammaFunction(Add(a, A))))),
Variables(a, A, B),
Assumptions(And(Element(a, CC), Element(A, ZZ), Element(B, ZZ), LessEqual(A, B), NotElement(Neg(a), Range(A, B)))))