Assumptions:
TeX:
E_{2}\!\left(\tau\right) = 1 + 6 \sum_{m=1}^{\infty} \frac{1}{\sin^{2}\!\left(\pi m \tau\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
Sum | Sum | |
Pow | Power | |
Sin | Sine | |
Pi | The constant pi (3.14...) | |
Infinity | Positive infinity | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("18a4d1"), Formula(Equal(EisensteinE(2, tau), Add(1, Mul(6, Sum(Div(1, Pow(Sin(Mul(Mul(Pi, m), tau)), 2)), For(m, 1, Infinity)))))), Variables(tau), Assumptions(And(Element(tau, HH))))