Assumptions:
TeX:
\sqrt{\frac{z}{c - z}} = \sqrt{z} \sqrt{\frac{1}{c - z}}
z \in \mathbb{R} \;\mathbin{\operatorname{and}}\; c \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; c - z \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sqrt | Principal square root | |
| RR | Real numbers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("185efc"),
Formula(Equal(Sqrt(Div(z, Sub(c, z))), Mul(Sqrt(z), Sqrt(Div(1, Sub(c, z)))))),
Variables(z, c),
Assumptions(And(Element(z, RR), Element(c, ClosedOpenInterval(0, Infinity)), NotEqual(Sub(c, z), 0))))