TeX:
K\!\left(\frac{1 - \sqrt{3} i}{2}\right) = \frac{{e}^{-i \pi / 12} \cdot {3}^{1 / 4} {\left(\Gamma\!\left(\frac{1}{3}\right)\right)}^{3}}{{2}^{7 / 3} \pi}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EllipticK | Legendre complete elliptic integral of the first kind | |
Sqrt | Principal square root | |
ConstI | Imaginary unit | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
Gamma | Gamma function |
Source code for this entry:
Entry(ID("175b7a"), Formula(Equal(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2)), Div(Mul(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi)))))