Assumptions:
References:
- H. Robbins (1955), A remark on Stirling's formula, Am. Math. Monthly 62(1), pp. 26-29.
TeX:
n ! > \sqrt{2 \pi} {n}^{n + 1 / 2} {e}^{-n} \exp\!\left(\frac{1}{12 n + 1}\right) n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Factorial | Factorial | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
Exp | Exponential function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("1745f5"), Formula(Greater(Factorial(n), Mul(Mul(Mul(Sqrt(Mul(2, Pi)), Pow(n, Add(n, Div(1, 2)))), Exp(Neg(n))), Exp(Div(1, Add(Mul(12, n), 1)))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))), References("H. Robbins (1955), A remark on Stirling's formula, Am. Math. Monthly 62(1), pp. 26-29."))