Fungrim home page

Fungrim entry: 1745f5

n!>2πnn+1/2enexp ⁣(112n+1)n ! > \sqrt{2 \pi} {n}^{n + 1 / 2} {e}^{-n} \exp\!\left(\frac{1}{12 n + 1}\right)
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
References:
  • H. Robbins (1955), A remark on Stirling's formula, Am. Math. Monthly 62(1), pp. 26-29.
TeX:
n ! > \sqrt{2 \pi} {n}^{n + 1 / 2} {e}^{-n} \exp\!\left(\frac{1}{12 n + 1}\right)

n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
Factorialn!n ! Factorial
Sqrtz\sqrt{z} Principal square root
Piπ\pi The constant pi (3.14...)
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("1745f5"),
    Formula(Greater(Factorial(n), Mul(Mul(Mul(Sqrt(Mul(2, Pi)), Pow(n, Add(n, Div(1, 2)))), Exp(Neg(n))), Exp(Div(1, Add(Mul(12, n), 1)))))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(0))),
    References("H. Robbins (1955), A remark on Stirling's formula, Am. Math. Monthly 62(1), pp. 26-29."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC