Assumptions:
TeX:
\left({r}^{2} + 4 r - {n}^{2} + 4\right) J^{(r + 2)}_{n}\!\left(0\right) + \left(r + 1\right) \left(r + 2\right) J^{(r)}_{n}\!\left(0\right) = 0 n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
BesselJDerivative | Differentiated Bessel function of the first kind | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("15ac84"), Formula(Equal(Add(Mul(Add(Sub(Add(Pow(r, 2), Mul(4, r)), Pow(n, 2)), 4), BesselJDerivative(n, 0, Add(r, 2))), Mul(Mul(Add(r, 1), Add(r, 2)), BesselJDerivative(n, 0, r))), 0)), Variables(nu, r), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))