Assumptions:
TeX:
\left({r}^{2} + 4 r - {n}^{2} + 4\right) J^{(r + 2)}_{n}\!\left(0\right) + \left(r + 1\right) \left(r + 2\right) J^{(r)}_{n}\!\left(0\right) = 0
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| BesselJDerivative | Differentiated Bessel function of the first kind | |
| ZZ | Integers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("15ac84"),
Formula(Equal(Add(Mul(Add(Sub(Add(Pow(r, 2), Mul(4, r)), Pow(n, 2)), 4), BesselJDerivative(n, 0, Add(r, 2))), Mul(Mul(Add(r, 1), Add(r, 2)), BesselJDerivative(n, 0, r))), 0)),
Variables(nu, r),
Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)))))