Assumptions:
TeX:
\left|P_{n}\!\left(x\right)\right| \le 2 I_{0}\!\left(2 n \sqrt{\frac{\left|x - 1\right|}{2}}\right) \le 2 {e}^{2 n \sqrt{\left|x - 1\right| / 2}} n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
LegendrePolynomial | Legendre polynomial | |
BesselI | Modified Bessel function of the first kind | |
Sqrt | Principal square root | |
Exp | Exponential function | |
ZZGreaterEqual | Integers greater than or equal to n | |
RR | Real numbers |
Source code for this entry:
Entry(ID("155343"), Formula(LessEqual(Abs(LegendrePolynomial(n, x)), Mul(2, BesselI(0, Mul(Mul(2, n), Sqrt(Div(Abs(Sub(x, 1)), 2))))), Mul(2, Exp(Mul(Mul(2, n), Sqrt(Div(Abs(Sub(x, 1)), 2))))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, RR))))