TeX:
\int_{0}^{\infty} {\left(\theta_{4}\!\left(0 , i t\right) - 1\right)}^{2} \, dt = \frac{\pi}{3} - \log(2)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| Log | Natural logarithm |
Source code for this entry:
Entry(ID("140815"),
Formula(Equal(Integral(Pow(Sub(JacobiTheta(4, 0, Mul(ConstI, t)), 1), 2), For(t, 0, Infinity)), Sub(Div(Pi, 3), Log(2)))))