References:
- https://doi.org/10.2307/2005327
TeX:
\left|\pi - \frac{{\left(a_{n} + b_{n}\right)}^{2}}{1 - \sum_{j=0}^{n} {2}^{j} c_{j}^{2}}\right| \le {2}^{n + 8} {e}^{-\pi {2}^{n + 1}}\; \text{ where } \left(a_{n}, b_{n}\right) = \operatorname{agm}_{n}\!\left(1, \frac{1}{\sqrt{2}}\right),\;c_{n} = a_{n} - b_{n}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
Sum | Sum | |
Exp | Exponential function | |
AGMSequence | Convergents in AGM iteration | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("13c539"), Formula(Where(LessEqual(Abs(Sub(Pi, Div(Pow(Add(a_(n), b_(n)), 2), Sub(1, Sum(Mul(Pow(2, j), Pow(c_(j), 2)), For(j, 0, n)))))), Mul(Pow(2, Add(n, 8)), Exp(Neg(Mul(Pi, Pow(2, Add(n, 1))))))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, 1, Div(1, Sqrt(2)))), Def(c_(n), Sub(a_(n), b_(n))))), References("https://doi.org/10.2307/2005327"))