Assumptions:
TeX:
{T}^{(r)}_{n}(x) = \frac{\left(n\right)_{r} \left(n - r + 1\right)_{r}}{\left(2 r - 1\right)!!} \,{}_2F_1\!\left(r + n, r - n, \frac{1}{2} + r, \frac{1 - x}{2}\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(r \le n \;\mathbin{\operatorname{or}}\; x \ne -1\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| RisingFactorial | Rising factorial | |
| Hypergeometric2F1 | Gauss hypergeometric function | |
| ZZ | Integers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("12ce84"),
Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, r)), Mul(Div(Mul(RisingFactorial(n, r), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Sub(Mul(2, r), 1))), Hypergeometric2F1(Add(r, n), Sub(r, n), Add(Div(1, 2), r), Div(Sub(1, x), 2))))),
Variables(n, r, x),
Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, CC), Or(LessEqual(r, n), NotEqual(x, -1)))))