Assumptions:
TeX:
{T}^{(r)}_{n}(x) = \frac{\left(n\right)_{r} \left(n - r + 1\right)_{r}}{\left(2 r - 1\right)!!} \,{}_2F_1\!\left(r + n, r - n, \frac{1}{2} + r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(r \le n \;\mathbin{\operatorname{or}}\; x \ne -1\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
ChebyshevT | Chebyshev polynomial of the first kind | |
RisingFactorial | Rising factorial | |
Hypergeometric2F1 | Gauss hypergeometric function | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("12ce84"), Formula(Equal(ComplexDerivative(ChebyshevT(n, x), For(x, x, r)), Mul(Div(Mul(RisingFactorial(n, r), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Sub(Mul(2, r), 1))), Hypergeometric2F1(Add(r, n), Sub(r, n), Add(Div(1, 2), r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, CC), Or(LessEqual(r, n), NotEqual(x, -1)))))