Assumptions:
TeX:
F_{n} = \frac{{e}^{n u} - \cos\!\left(\pi n\right) {e}^{-n u}}{\sqrt{5}}\; \text{ where } u = \log(\varphi)
n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Fibonacci | Fibonacci number | |
| Exp | Exponential function | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Sqrt | Principal square root | |
| Log | Natural logarithm | |
| GoldenRatio | The golden ratio (1.618...) | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("12b336"),
Formula(Equal(Fibonacci(n), Where(Div(Sub(Exp(Mul(n, u)), Mul(Cos(Mul(Pi, n)), Exp(Mul(Neg(n), u)))), Sqrt(5)), Equal(u, Log(GoldenRatio))))),
Variables(n),
Assumptions(Element(n, ZZ)))