Fungrim home page

Fungrim entry: 12b1d0

RD ⁣(x,y,z)=iRD ⁣(x,y,z)R_D\!\left(-x, -y, z\right) = -\overline{i R_D\!\left(x, y, -z\right)}
Assumptions:x(0,]  and  y(0,]  and  z(0,]x \in \left(0, \infty\right] \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right] \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right]
TeX:
R_D\!\left(-x, -y, z\right) = -\overline{i R_D\!\left(x, y, -z\right)}

x \in \left(0, \infty\right] \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right] \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right]
Definitions:
Fungrim symbol Notation Short description
CarlsonRDRD ⁣(x,y,z)R_D\!\left(x, y, z\right) Degenerate Carlson symmetric elliptic integral of the third kind
Conjugatez\overline{z} Complex conjugate
ConstIii Imaginary unit
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("12b1d0"),
    Formula(Equal(CarlsonRD(Neg(x), Neg(y), z), Neg(Conjugate(Mul(ConstI, CarlsonRD(x, y, Neg(z))))))),
    Variables(x, y, z),
    Assumptions(And(Element(x, OpenClosedInterval(0, Infinity)), Element(y, OpenClosedInterval(0, Infinity)), Element(z, OpenClosedInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC