Assumptions:
TeX:
J_{\nu}\!\left(z\right) = {\left(2 \pi z\right)}^{-1 / 2} \left({e}^{-i \theta} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, -2 i z\right) + {e}^{i \theta} U^{*}\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 i z\right)\right)\; \text{ where } \theta = \frac{\pi \left(2 \nu + 1\right)}{4} - z \nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
HypergeometricUStar | Scaled Tricomi confluent hypergeometric function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("127f05"), Formula(Where(Equal(BesselJ(nu, z), Mul(Pow(Mul(Mul(2, Pi), z), Neg(Div(1, 2))), Add(Mul(Exp(Neg(Mul(ConstI, theta))), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Neg(Mul(Mul(2, ConstI), z)))), Mul(Exp(Mul(ConstI, theta)), HypergeometricUStar(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(Mul(2, ConstI), z)))))), Equal(theta, Sub(Div(Mul(Pi, Add(Mul(2, nu), 1)), 4), z)))), Variables(nu, z), Assumptions(And(Element(nu, CC), Element(z, CC), Greater(Re(z), 0))))