Fungrim home page

Fungrim entry: 124339

 ⁣(f(z),τ)=z   where f(z)=RF ⁣(ze1 ⁣(τ),ze2 ⁣(τ),ze3 ⁣(τ))\wp\!\left(f(z), \tau\right) = z\; \text{ where } f(z) = R_F\!\left(z - e_{1}\!\left(\tau\right), z - e_{2}\!\left(\tau\right), z - e_{3}\!\left(\tau\right)\right)
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
TeX:
\wp\!\left(f(z), \tau\right) = z\; \text{ where } f(z) = R_F\!\left(z - e_{1}\!\left(\tau\right), z - e_{2}\!\left(\tau\right), z - e_{3}\!\left(\tau\right)\right)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("124339"),
    Formula(Where(Equal(WeierstrassP(f(z), tau), z), Def(f(z), CarlsonRF(Sub(z, EllipticRootE(1, tau)), Sub(z, EllipticRootE(2, tau)), Sub(z, EllipticRootE(3, tau)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC