Assumptions:
TeX:
\sqrt{r {e}^{i \theta}} = \sqrt{r} {e}^{i \theta / 2} r \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; \theta \in \left(-\pi, \pi\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
OpenClosedInterval | Open-closed interval | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("1232f7"), Formula(Equal(Sqrt(Mul(r, Exp(Mul(ConstI, theta)))), Mul(Sqrt(r), Exp(Div(Mul(ConstI, theta), 2))))), Variables(r, theta), Assumptions(And(Element(r, ClosedOpenInterval(0, Infinity)), Element(theta, OpenClosedInterval(Neg(Pi), Pi)))))