Assumptions:
TeX:
E_{6}\!\left(\tau\right) = \frac{1}{2} \left(\theta_{3}^{12}\!\left(0, \tau\right) + \theta_{4}^{12}\!\left(0, \tau\right) - 3 \theta_{2}^{8}\!\left(0, \tau\right) \left(\theta_{3}^{4}\!\left(0, \tau\right) + \theta_{4}^{4}\!\left(0, \tau\right)\right)\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("10f3b2"), Formula(Equal(EisensteinE(6, tau), Mul(Div(1, 2), Sub(Add(Pow(JacobiTheta(3, 0, tau), 12), Pow(JacobiTheta(4, 0, tau), 12)), Mul(Mul(3, Pow(JacobiTheta(2, 0, tau), 8)), Add(Pow(JacobiTheta(3, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4))))))), Variables(tau), Assumptions(Element(tau, HH)))