Assumptions:
TeX:
\left(1 - {x}^{2}\right) y''(x) - x y'(x) + {n}^{2} y\!\left(x\right) = 0\; \text{ where } y\!\left(x\right) = {c}_{1} T_{n}\!\left(x\right) + {c}_{2} U_{n - 1}\!\left(x\right) \sqrt{1 - {x}^{2}} n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{1} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{2} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left({c}_{2} = 0 \,\mathbin{\operatorname{or}}\, x \notin \left(-\infty, 1\right] \cup \left[1, \infty\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Derivative | Derivative | |
ChebyshevT | Chebyshev polynomial of the first kind | |
ChebyshevU | Chebyshev polynomial of the second kind | |
Sqrt | Principal square root | |
ZZ | Integers | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("0ed026"), Formula(Where(Equal(Add(Sub(Mul(Sub(1, Pow(x, 2)), Derivative(y(x), Tuple(x, x, 2))), Mul(x, Derivative(y(x), Tuple(x, x, 1)))), Mul(Pow(n, 2), y(x))), 0), Equal(y(x), Add(Mul(Subscript(c, 1), ChebyshevT(n, x)), Mul(Mul(Subscript(c, 2), ChebyshevU(Sub(n, 1), x)), Sqrt(Sub(1, Pow(x, 2)))))))), Variables(n, x, Subscript(c, 1), Subscript(c, 2)), Assumptions(And(Element(n, ZZ), Element(x, CC), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC), Or(Equal(Subscript(c, 2), 0), NotElement(x, Union(OpenClosedInterval(Neg(Infinity), 1), ClosedOpenInterval(1, Infinity)))))))