Assumptions:
TeX:
R_F\!\left(0, y, z\right) \le \frac{1}{2 \sqrt{\max\!\left(y, z\right)}} \left(\pi + \left|\log\!\left(\frac{y}{z}\right)\right|\right)
y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| Abs | Absolute value | |
| Log | Natural logarithm | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("0e209c"),
Formula(LessEqual(CarlsonRF(0, y, z), Mul(Div(1, Mul(2, Sqrt(Max(y, z)))), Add(Pi, Abs(Log(Div(y, z))))))),
Variables(y, z),
Assumptions(And(Element(y, OpenInterval(0, Infinity)), Element(z, OpenInterval(0, Infinity)))))