Assumptions:
Alternative assumptions:
Alternative assumptions:
TeX:
\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \left(0, \infty\right)
a \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \setminus \left(-\infty, 0\right]
a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, \arg\!\left(a\right) - \arg\!\left(b\right) \in \left(-\pi, \pi\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity | |
| ClosedOpenInterval | Closed-open interval | |
| OpenClosedInterval | Open-closed interval | |
| Arg | Complex argument | |
| ConstPi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("0d8e03"),
Formula(Equal(Sqrt(Div(a, b)), Div(Sqrt(a), Sqrt(b)))),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, OpenInterval(0, Infinity))), And(Element(a, ClosedOpenInterval(0, Infinity)), Element(b, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))), And(Element(a, CC), Element(b, SetMinus(CC, Set(0))), Element(Sub(Arg(a), Arg(b)), OpenClosedInterval(Neg(ConstPi), ConstPi)))))